Sensor Fault Diagnosis Based on Ensemble Empirical Mode Decomposition and Optimized Least Squares Support Vector Machine
نویسندگان
چکیده
A fault diagnosis method for sensor fault based on ensemble empirical mode decomposition (EEMD) energy entropy and optimized structural parameters least squares support vector machine (LSSVM) is put forward in this paper. Firstly, the original output fault signals are pretreatment with EEMD, and then the EEMD energy entropy is extracted as the fault feature vector. Then the radial basis function (RBF) kernel function parameters and the regularization parameter of LSSVM are optimized by using chaotic particle swarm optimization (CPSO) algorithm. Finally, with the applying of proposed diagnosis method, the model of sensor fault diagnosis is built for identification and decision. The diagnostic results show that the proposed method can identify sensor fault effectively and accurately.
منابع مشابه
A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملNumerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor
Tool fault diagnosis in numerical control (NC) machines plays a significant role in ensuring manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore, in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis (SSA) and least squares support vector machine (LS-SVM) using only a single sensor. First, SSA was used to e...
متن کاملA Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network
This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 8 شماره
صفحات -
تاریخ انتشار 2013